本文主要介紹了OpenCV全景圖像拼接的實現(xiàn)示例,分享給大家,具體如下:
left_01.jpg
right_01.jpg
Stitcher.py
import numpy as np import cv2 class Stitcher: #拼接函數(shù) def stitch(self, images, ratio=0.75, reprojThresh=4.0,showMatches=False): #獲取輸入圖片 (imageB, imageA) = images #檢測A、B圖片的SIFT關(guān)鍵特征點,并計算特征描述子 (kpsA, featuresA) = self.detectAndDescribe(imageA) (kpsB, featuresB) = self.detectAndDescribe(imageB) # 匹配兩張圖片的所有特征點,返回匹配結(jié)果 M = self.matchKeypoints(kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh) # 如果返回結(jié)果為空,沒有匹配成功的特征點,退出算法 if M is None: return None # 否則,提取匹配結(jié)果 # H是3x3視角變換矩陣 (matches, H, status) = M # 將圖片A進(jìn)行視角變換,result是變換后圖片 result = cv2.warpPerspective(imageA, H, (imageA.shape[1] + imageB.shape[1], imageA.shape[0])) self.cv_show('result', result) # 將圖片B傳入result圖片最左端 result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB self.cv_show('result', result) # 檢測是否需要顯示圖片匹配 if showMatches: # 生成匹配圖片 vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches, status) # 返回結(jié)果 return (result, vis) # 返回匹配結(jié)果 return result def cv_show(self,name,img): cv2.imshow(name, img) cv2.waitKey(0) cv2.destroyAllWindows() def detectAndDescribe(self, image): # 將彩色圖片轉(zhuǎn)換成灰度圖 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 建立SIFT生成器 descriptor = cv2.xfeatures2d.SIFT_create() # 檢測SIFT特征點,并計算描述子 (kps, features) = descriptor.detectAndCompute(image, None) # 將結(jié)果轉(zhuǎn)換成NumPy數(shù)組 kps = np.float32([kp.pt for kp in kps]) # 返回特征點集,及對應(yīng)的描述特征 return (kps, features) def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh): # 建立暴力匹配器 matcher = cv2.BFMatcher() # 使用KNN檢測來自A、B圖的SIFT特征匹配對,K=2 rawMatches = matcher.knnMatch(featuresA, featuresB, 2) matches = [] for m in rawMatches: # 當(dāng)最近距離跟次近距離的比值小于ratio值時,保留此匹配對 if len(m) == 2 and m[0].distance m[1].distance * ratio: # 存儲兩個點在featuresA, featuresB中的索引值 matches.append((m[0].trainIdx, m[0].queryIdx)) # 當(dāng)篩選后的匹配對大于4時,計算視角變換矩陣 if len(matches) > 4: # 獲取匹配對的點坐標(biāo) ptsA = np.float32([kpsA[i] for (_, i) in matches]) ptsB = np.float32([kpsB[i] for (i, _) in matches]) # 計算視角變換矩陣 (H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, reprojThresh) # 返回結(jié)果 return (matches, H, status) # 如果匹配對小于4時,返回None return None def drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status): # 初始化可視化圖片,將A、B圖左右連接到一起 (hA, wA) = imageA.shape[:2] (hB, wB) = imageB.shape[:2] vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8") vis[0:hA, 0:wA] = imageA vis[0:hB, wA:] = imageB # 聯(lián)合遍歷,畫出匹配對 for ((trainIdx, queryIdx), s) in zip(matches, status): # 當(dāng)點對匹配成功時,畫到可視化圖上 if s == 1: # 畫出匹配對 ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1])) ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1])) cv2.line(vis, ptA, ptB, (0, 255, 0), 1) # 返回可視化結(jié)果 return vis
ImageStiching.py
from Stitcher import Stitcher import cv2 # 讀取拼接圖片 imageA = cv2.imread("left_01.jpg") imageB = cv2.imread("right_01.jpg") # 把圖片拼接成全景圖 stitcher = Stitcher() (result, vis) = stitcher.stitch([imageA, imageB], showMatches=True) # 顯示所有圖片 cv2.imshow("Image A", imageA) cv2.imshow("Image B", imageB) cv2.imshow("Keypoint Matches", vis) cv2.imshow("Result", result) cv2.waitKey(0) cv2.destroyAllWindows()
運行結(jié)果:
如遇以下錯誤:
cv2.error: OpenCV(3.4.3) C:\projects\opencv-python\opencv_contrib\modules\xfeatures2d\src\sift.cpp:1207: error: (-213:The function/feature is not implemented) This algorithm is patented and is excluded in this configuration; Set OPENCV_ENABLE_NONFREE CMake option and rebuild the library in function ‘cv::xfeatures2d::SIFT::create'
如果運行OpenCV程序提示算法版權(quán)問題可以通過安裝低版本的opencv-contrib-python解決:
pip install --user opencv-contrib-python==3.3.0.10
到此這篇關(guān)于OpenCV全景圖像拼接的實現(xiàn)示例的文章就介紹到這了,更多相關(guān)OpenCV 圖像拼接內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
標(biāo)簽:云南 江蘇 寧夏 金融催收 酒泉 龍巖 定西 商丘
巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《OpenCV全景圖像拼接的實現(xiàn)示例》,本文關(guān)鍵詞 OpenCV,全景,圖像,拼接,的,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請?zhí)峁┫嚓P(guān)信息告之我們,我們將及時溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無關(guān)。