定位原理很簡單,故不贅述,直接上源碼,內(nèi)附注釋。(如果對您的學(xué)習(xí)有所幫助,還請幫忙點(diǎn)個贊,謝謝了)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed May 16 10:50:29 2018 @author: dag """ import sympy import numpy as np import math from matplotlib.pyplot import plot from matplotlib.pyplot import show import matplotlib.pyplot as plt import matplotlib #解決無法顯示中文問題,fname是加載字體路徑,根據(jù)自身pc實(shí)際確定,具體請百度 zhfont1 = matplotlib.font_manager.FontProperties(fname='/System/Library/Fonts/Hiragino Sans GB W3.ttc') #隨機(jī)產(chǎn)生3個參考節(jié)點(diǎn)坐標(biāo) maxy = 1000 maxx = 1000 cx = maxx*np.random.rand(3) cy = maxy*np.random.rand(3) dot1 = plot(cx,cy,'k^') #生成盲節(jié)點(diǎn),以及其與參考節(jié)點(diǎn)歐式距離 mtx = maxx*np.random.rand() mty = maxy*np.random.rand() plt.hold('on') dot2 = plot(mtx,mty,'go') da = math.sqrt(np.square(mtx-cx[0])+np.square(mty-cy[0])) db = math.sqrt(np.square(mtx-cx[1])+np.square(mty-cy[1])) dc = math.sqrt(np.square(mtx-cx[2])+np.square(mty-cy[2])) #計(jì)算定位坐標(biāo) def triposition(xa,ya,da,xb,yb,db,xc,yc,dc): x,y = sympy.symbols('x y') f1 = 2*x*(xa-xc)+np.square(xc)-np.square(xa)+2*y*(ya-yc)+np.square(yc)-np.square(ya)-(np.square(dc)-np.square(da)) f2 = 2*x*(xb-xc)+np.square(xc)-np.square(xb)+2*y*(yb-yc)+np.square(yc)-np.square(yb)-(np.square(dc)-np.square(db)) result = sympy.solve([f1,f2],[x,y]) locx,locy = result[x],result[y] return [locx,locy] #解算得到定位節(jié)點(diǎn)坐標(biāo) [locx,locy] = triposition(cx[0],cy[0],da,cx[1],cy[1],db,cx[2],cy[2],dc) plt.hold('on') dot3 = plot(locx,locy,'r*') #顯示腳注 x = [[locx,cx[0]],[locx,cx[1]],[locx,cx[2]]] y = [[locy,cy[0]],[locy,cy[1]],[locy,cy[2]]] for i in range(len(x)): plt.plot(x[i],y[i],linestyle = '--',color ='g' ) plt.title('三邊測量法的定位',fontproperties=zhfont1) plt.legend(['參考節(jié)點(diǎn)','盲節(jié)點(diǎn)','定位節(jié)點(diǎn)'], loc='lower right',prop=zhfont1) show() derror = math.sqrt(np.square(locx-mtx) + np.square(locy-mty)) print(derror)
輸出效果圖:
補(bǔ)充:python opencv實(shí)現(xiàn)三角測量(triangulation)
import cv2 import numpy as np import scipy.io as scio if __name__ == '__main__': print("main function.") #驗(yàn)證點(diǎn) point = np.array([1.0 ,2.0, 3.0]) #獲取相機(jī)參數(shù) cams_data = scio.loadmat('/data1/dy/SuperSMPL/data/AMAfMvS_Dataset/cameras_I_crane.mat') Pmats = cams_data['Pmats'] # Pmats(8, 3, 4) 投影矩陣 P1 = Pmats[0,::] P3 = Pmats[2,::] #通過投影矩陣將點(diǎn)從世界坐標(biāo)投到像素坐標(biāo) pj1 = np.dot(P1, np.vstack([point.reshape(3,1),np.array([1])])) pj3 = np.dot(P3, np.vstack([point.reshape(3,1),np.array([1])])) point1 = pj1[:2,:]/pj1[2,:]#兩行一列,齊次坐標(biāo)轉(zhuǎn)化 point3 = pj3[:2,:]/pj3[2,:] #利用投影矩陣以及對應(yīng)像素點(diǎn),進(jìn)行三角測量 points = cv2.triangulatePoints(P1,P3,point1,point3) #齊次坐標(biāo)轉(zhuǎn)化并輸出 print(points[0:3,:]/points[3,:])
以上為個人經(jīng)驗(yàn),希望能給大家一個參考,也希望大家多多支持腳本之家。如有錯誤或未考慮完全的地方,望不吝賜教。
標(biāo)簽:陽泉 赤峰 臨汾 金華 雙鴨山 日照 克拉瑪依 貴州
巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《python 三邊測量定位的實(shí)現(xiàn)代碼》,本文關(guān)鍵詞 python,三邊,測量,定位,的,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無關(guān)。