datasets這是一個(gè)pytorch定義的dataset的源碼集合。下面是一個(gè)自定義Datasets的基本框架,初始化放在__init__()中,其中__getitem__()和__len__()兩個(gè)方法是必須重寫的。
__getitem__()返回訓(xùn)練數(shù)據(jù),如圖片和label,而__len__()返回?cái)?shù)據(jù)長(zhǎng)度。
class CustomDataset(data.Dataset):#需要繼承data.Dataset def __init__(self): # TODO # 1. Initialize file path or list of file names. pass def __getitem__(self, index): # TODO # 1. Read one data from file (e.g. using numpy.fromfile, PIL.Image.open). # 2. Preprocess the data (e.g. torchvision.Transform). # 3. Return a data pair (e.g. image and label). #這里需要注意的是,第一步:read one data,是一個(gè)data pass def __len__(self): # You should change 0 to the total size of your dataset. return 0
DataLoader(object)
可用參數(shù):
dataset(Dataset)
傳入的數(shù)據(jù)集
batch_size(int, optional)
每個(gè)batch有多少個(gè)樣本
shuffle(bool, optional)
在每個(gè)epoch開始的時(shí)候,對(duì)數(shù)據(jù)進(jìn)行重新排序
sampler(Sampler, optional)
自定義從數(shù)據(jù)集中取樣本的策略,如果指定這個(gè)參數(shù),那么shuffle必須為False
batch_sampler(Sampler, optional)
與sampler類似,但是一次只返回一個(gè)batch的indices(索引),需要注意的是,一旦指定了這個(gè)參數(shù),那么batch_size,shuffle,sampler,drop_last就不能再制定了(互斥——Mutually exclusive)
num_workers (int, optional)
這個(gè)參數(shù)決定了有幾個(gè)進(jìn)程來(lái)處理data loading。0意味著所有的數(shù)據(jù)都會(huì)被load進(jìn)主進(jìn)程。(默認(rèn)為0)
collate_fn (callable, optional)
將一個(gè)list的sample組成一個(gè)mini-batch的函數(shù)
pin_memory (bool, optional)
如果設(shè)置為True,那么data loader將會(huì)在返回它們之前,將tensors拷貝到CUDA中的固定內(nèi)存(CUDA pinned memory)中.
drop_last (bool, optional)
如果設(shè)置為True:這個(gè)是對(duì)最后的未完成的batch來(lái)說(shuō)的,比如你的batch_size設(shè)置為64,而一個(gè)epoch只有100個(gè)樣本,那么訓(xùn)練的時(shí)候后面的36個(gè)就被扔掉了。 如果為False(默認(rèn)),那么會(huì)繼續(xù)正常執(zhí)行,只是最后的batch_size會(huì)小一點(diǎn)。
timeout(numeric, optional)
如果是正數(shù),表明等待從worker進(jìn)程中收集一個(gè)batch等待的時(shí)間,若超出設(shè)定的時(shí)間還沒(méi)有收集到,那就不收集這個(gè)內(nèi)容了。這個(gè)numeric應(yīng)總是大于等于0。默認(rèn)為0
worker_init_fn (callable, optional)
每個(gè)worker初始化函數(shù) If not None, this will be called on eachworker subprocess with the worker id (an int in [0, num_workers - 1]) as input, after seeding and before data loading. (default: None)
假設(shè)TXT文件保存了數(shù)據(jù)的圖片和label,格式如下:第一列是圖片的名字,第二列是label
0.jpg 0 1.jpg 1 2.jpg 2 3.jpg 3 4.jpg 4 5.jpg 5 6.jpg 6 7.jpg 7 8.jpg 8 9.jpg 9
也可以是多標(biāo)簽的數(shù)據(jù),如:
0.jpg 0 10 1.jpg 1 11 2.jpg 2 12 3.jpg 3 13 4.jpg 4 14 5.jpg 5 15 6.jpg 6 16 7.jpg 7 17 8.jpg 8 18 9.jpg 9 19
圖庫(kù)十張?jiān)紙D片放在./dataset/images目錄下,然后我們就可以自定義一個(gè)Dataset解析這些數(shù)據(jù)并讀取圖片,再使用DataLoader類產(chǎn)生batch的訓(xùn)練數(shù)據(jù)
首先先自定義一個(gè)TorchDataset類,用于讀取圖片數(shù)據(jù),產(chǎn)生標(biāo)簽:
注意初始化函數(shù):
import torch from torch.autograd import Variable from torchvision import transforms from torch.utils.data import Dataset, DataLoader import numpy as np from utils import image_processing import os class TorchDataset(Dataset): def __init__(self, filename, image_dir, resize_height=256, resize_width=256, repeat=1): ''' :param filename: 數(shù)據(jù)文件TXT:格式:imge_name.jpg label1_id labe2_id :param image_dir: 圖片路徑:image_dir+imge_name.jpg構(gòu)成圖片的完整路徑 :param resize_height 為None時(shí),不進(jìn)行縮放 :param resize_width 為None時(shí),不進(jìn)行縮放, PS:當(dāng)參數(shù)resize_height或resize_width其中一個(gè)為None時(shí),可實(shí)現(xiàn)等比例縮放 :param repeat: 所有樣本數(shù)據(jù)重復(fù)次數(shù),默認(rèn)循環(huán)一次,當(dāng)repeat為None時(shí),表示無(wú)限循環(huán)sys.maxsize ''' self.image_label_list = self.read_file(filename) self.image_dir = image_dir self.len = len(self.image_label_list) self.repeat = repeat self.resize_height = resize_height self.resize_width = resize_width # 相關(guān)預(yù)處理的初始化 '''class torchvision.transforms.ToTensor''' # 把shape=(H,W,C)的像素值范圍為[0, 255]的PIL.Image或者numpy.ndarray數(shù)據(jù) # 轉(zhuǎn)換成shape=(C,H,W)的像素?cái)?shù)據(jù),并且被歸一化到[0.0, 1.0]的torch.FloatTensor類型。 self.toTensor = transforms.ToTensor() '''class torchvision.transforms.Normalize(mean, std) 此轉(zhuǎn)換類作用于torch. * Tensor,給定均值(R, G, B) 和標(biāo)準(zhǔn)差(R, G, B), 用公式channel = (channel - mean) / std進(jìn)行規(guī)范化。 ''' # self.normalize=transforms.Normalize() def __getitem__(self, i): index = i % self.len # print("i={},index={}".format(i, index)) image_name, label = self.image_label_list[index] image_path = os.path.join(self.image_dir, image_name) img = self.load_data(image_path, self.resize_height, self.resize_width, normalization=False) img = self.data_preproccess(img) label=np.array(label) return img, label def __len__(self): if self.repeat == None: data_len = 10000000 else: data_len = len(self.image_label_list) * self.repeat return data_len def read_file(self, filename): image_label_list = [] with open(filename, 'r') as f: lines = f.readlines() for line in lines: # rstrip:用來(lái)去除結(jié)尾字符、空白符(包括\n、\r、\t、' ',即:換行、回車、制表符、空格) content = line.rstrip().split(' ') name = content[0] labels = [] for value in content[1:]: labels.append(int(value)) image_label_list.append((name, labels)) return image_label_list def load_data(self, path, resize_height, resize_width, normalization): ''' 加載數(shù)據(jù) :param path: :param resize_height: :param resize_width: :param normalization: 是否歸一化 :return: ''' image = image_processing.read_image(path, resize_height, resize_width, normalization) return image def data_preproccess(self, data): ''' 數(shù)據(jù)預(yù)處理 :param data: :return: ''' data = self.toTensor(data) return data
if __name__=='__main__': train_filename="../dataset/train.txt" # test_filename="../dataset/test.txt" image_dir='../dataset/images' epoch_num=2 #總樣本循環(huán)次數(shù) batch_size=7 #訓(xùn)練時(shí)的一組數(shù)據(jù)的大小 train_data_nums=10 max_iterate=int((train_data_nums+batch_size-1)/batch_size*epoch_num) #總迭代次數(shù) train_data = TorchDataset(filename=train_filename, image_dir=image_dir,repeat=1) # test_data = TorchDataset(filename=test_filename, image_dir=image_dir,repeat=1) train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False) # test_loader = DataLoader(dataset=test_data, batch_size=batch_size,shuffle=False) # [1]使用epoch方法迭代,TorchDataset的參數(shù)repeat=1 for epoch in range(epoch_num): for batch_image, batch_label in train_loader: image=batch_image[0,:] image=image.numpy()#image=np.array(image) image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c] image_processing.cv_show_image("image",image) print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label)) # batch_x, batch_y = Variable(batch_x), Variable(batch_y)
上面的迭代代碼是通過(guò)兩個(gè)for實(shí)現(xiàn),其中參數(shù)epoch_num表示總樣本循環(huán)次數(shù),比如epoch_num=2,那就是所有樣本循環(huán)迭代2次。
但這會(huì)出現(xiàn)一個(gè)問(wèn)題,當(dāng)樣本總數(shù)train_data_nums與batch_size不能整取時(shí),最后一個(gè)batch會(huì)少于規(guī)定batch_size的大小,比如這里樣本總數(shù)train_data_nums=10,batch_size=7,第一次迭代會(huì)產(chǎn)生7個(gè)樣本,第二次迭代會(huì)因?yàn)闃颖静蛔?,只能產(chǎn)生3個(gè)樣本。
我們希望,每次迭代都會(huì)產(chǎn)生相同大小的batch數(shù)據(jù),因此可以如下迭代:注意本人在構(gòu)造TorchDataset類時(shí),就已經(jīng)考慮循環(huán)迭代的方法,因此,你現(xiàn)在只需修改repeat為None時(shí),就表示無(wú)限循環(huán)了,調(diào)用方法如下:
''' 下面兩種方式,TorchDataset設(shè)置repeat=None可以實(shí)現(xiàn)無(wú)限循環(huán),退出循環(huán)由max_iterate設(shè)定 ''' train_data = TorchDataset(filename=train_filename, image_dir=image_dir,repeat=None) train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False) # [2]第2種迭代方法 for step, (batch_image, batch_label) in enumerate(train_loader): image=batch_image[0,:] image=image.numpy()#image=np.array(image) image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c] image_processing.cv_show_image("image",image) print("step:{},batch_image.shape:{},batch_label:{}".format(step,batch_image.shape,batch_label)) # batch_x, batch_y = Variable(batch_x), Variable(batch_y) if step>=max_iterate: break # [3]第3種迭代方法 # for step in range(max_iterate): # batch_image, batch_label=train_loader.__iter__().__next__() # image=batch_image[0,:] # image=image.numpy()#image=np.array(image) # image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c] # image_processing.cv_show_image("image",image) # print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label)) # # batch_x, batch_y = Variable(batch_x), Variable(batch_y)
上面代碼,用到image_processing,這是本人封裝好的圖像處理包,包含讀取圖片,畫圖等基本方法:
# -*-coding: utf-8 -*- """ @Project: IntelligentManufacture @File : image_processing.py @Author : panjq @E-mail : pan_jinquan@163.com @Date : 2019-02-14 15:34:50 """ import os import glob import cv2 import numpy as np import matplotlib.pyplot as plt def show_image(title, image): ''' 調(diào)用matplotlib顯示RGB圖片 :param title: 圖像標(biāo)題 :param image: 圖像的數(shù)據(jù) :return: ''' # plt.figure("show_image") # print(image.dtype) plt.imshow(image) plt.axis('on') # 關(guān)掉坐標(biāo)軸為 off plt.title(title) # 圖像題目 plt.show() def cv_show_image(title, image): ''' 調(diào)用OpenCV顯示RGB圖片 :param title: 圖像標(biāo)題 :param image: 輸入RGB圖像 :return: ''' channels=image.shape[-1] if channels==3: image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) # 將BGR轉(zhuǎn)為RGB cv2.imshow(title,image) cv2.waitKey(0) def read_image(filename, resize_height=None, resize_width=None, normalization=False): ''' 讀取圖片數(shù)據(jù),默認(rèn)返回的是uint8,[0,255] :param filename: :param resize_height: :param resize_width: :param normalization:是否歸一化到[0.,1.0] :return: 返回的RGB圖片數(shù)據(jù) ''' bgr_image = cv2.imread(filename) # bgr_image = cv2.imread(filename,cv2.IMREAD_IGNORE_ORIENTATION|cv2.IMREAD_COLOR) if bgr_image is None: print("Warning:不存在:{}", filename) return None if len(bgr_image.shape) == 2: # 若是灰度圖則轉(zhuǎn)為三通道 print("Warning:gray image", filename) bgr_image = cv2.cvtColor(bgr_image, cv2.COLOR_GRAY2BGR) rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB) # 將BGR轉(zhuǎn)為RGB # show_image(filename,rgb_image) # rgb_image=Image.open(filename) rgb_image = resize_image(rgb_image,resize_height,resize_width) rgb_image = np.asanyarray(rgb_image) if normalization: # 不能寫成:rgb_image=rgb_image/255 rgb_image = rgb_image / 255.0 # show_image("src resize image",image) return rgb_image def fast_read_image_roi(filename, orig_rect, ImreadModes=cv2.IMREAD_COLOR, normalization=False): ''' 快速讀取圖片的方法 :param filename: 圖片路徑 :param orig_rect:原始圖片的感興趣區(qū)域rect :param ImreadModes: IMREAD_UNCHANGED IMREAD_GRAYSCALE IMREAD_COLOR IMREAD_ANYDEPTH IMREAD_ANYCOLOR IMREAD_LOAD_GDAL IMREAD_REDUCED_GRAYSCALE_2 IMREAD_REDUCED_COLOR_2 IMREAD_REDUCED_GRAYSCALE_4 IMREAD_REDUCED_COLOR_4 IMREAD_REDUCED_GRAYSCALE_8 IMREAD_REDUCED_COLOR_8 IMREAD_IGNORE_ORIENTATION :param normalization: 是否歸一化 :return: 返回感興趣區(qū)域ROI ''' # 當(dāng)采用IMREAD_REDUCED模式時(shí),對(duì)應(yīng)rect也需要縮放 scale=1 if ImreadModes == cv2.IMREAD_REDUCED_COLOR_2 or ImreadModes == cv2.IMREAD_REDUCED_COLOR_2: scale=1/2 elif ImreadModes == cv2.IMREAD_REDUCED_GRAYSCALE_4 or ImreadModes == cv2.IMREAD_REDUCED_COLOR_4: scale=1/4 elif ImreadModes == cv2.IMREAD_REDUCED_GRAYSCALE_8 or ImreadModes == cv2.IMREAD_REDUCED_COLOR_8: scale=1/8 rect = np.array(orig_rect)*scale rect = rect.astype(int).tolist() bgr_image = cv2.imread(filename,flags=ImreadModes) if bgr_image is None: print("Warning:不存在:{}", filename) return None if len(bgr_image.shape) == 3: # rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB) # 將BGR轉(zhuǎn)為RGB else: rgb_image=bgr_image #若是灰度圖 rgb_image = np.asanyarray(rgb_image) if normalization: # 不能寫成:rgb_image=rgb_image/255 rgb_image = rgb_image / 255.0 roi_image=get_rect_image(rgb_image , rect) # show_image_rect("src resize image",rgb_image,rect) # cv_show_image("reROI",roi_image) return roi_image def resize_image(image,resize_height, resize_width): ''' :param image: :param resize_height: :param resize_width: :return: ''' image_shape=np.shape(image) height=image_shape[0] width=image_shape[1] if (resize_height is None) and (resize_width is None):#錯(cuò)誤寫法:resize_height and resize_width is None return image if resize_height is None: resize_height=int(height*resize_width/width) elif resize_width is None: resize_width=int(width*resize_height/height) image = cv2.resize(image, dsize=(resize_width, resize_height)) return image def scale_image(image,scale): ''' :param image: :param scale: (scale_w,scale_h) :return: ''' image = cv2.resize(image,dsize=None, fx=scale[0],fy=scale[1]) return image def get_rect_image(image,rect): ''' :param image: :param rect: [x,y,w,h] :return: ''' x, y, w, h=rect cut_img = image[y:(y+ h),x:(x+w)] return cut_img def scale_rect(orig_rect,orig_shape,dest_shape): ''' 對(duì)圖像進(jìn)行縮放時(shí),對(duì)應(yīng)的rectangle也要進(jìn)行縮放 :param orig_rect: 原始圖像的rect=[x,y,w,h] :param orig_shape: 原始圖像的維度shape=[h,w] :param dest_shape: 縮放后圖像的維度shape=[h,w] :return: 經(jīng)過(guò)縮放后的rectangle ''' new_x=int(orig_rect[0]*dest_shape[1]/orig_shape[1]) new_y=int(orig_rect[1]*dest_shape[0]/orig_shape[0]) new_w=int(orig_rect[2]*dest_shape[1]/orig_shape[1]) new_h=int(orig_rect[3]*dest_shape[0]/orig_shape[0]) dest_rect=[new_x,new_y,new_w,new_h] return dest_rect def show_image_rect(win_name,image,rect): ''' :param win_name: :param image: :param rect: :return: ''' x, y, w, h=rect point1=(x,y) point2=(x+w,y+h) cv2.rectangle(image, point1, point2, (0, 0, 255), thickness=2) cv_show_image(win_name, image) def rgb_to_gray(image): image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) return image def save_image(image_path, rgb_image,toUINT8=True): if toUINT8: rgb_image = np.asanyarray(rgb_image * 255, dtype=np.uint8) if len(rgb_image.shape) == 2: # 若是灰度圖則轉(zhuǎn)為三通道 bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_GRAY2BGR) else: bgr_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2BGR) cv2.imwrite(image_path, bgr_image) def combime_save_image(orig_image, dest_image, out_dir,name,prefix): ''' 命名標(biāo)準(zhǔn):out_dir/name_prefix.jpg :param orig_image: :param dest_image: :param image_path: :param out_dir: :param prefix: :return: ''' dest_path = os.path.join(out_dir, name + "_"+prefix+".jpg") save_image(dest_path, dest_image) dest_image = np.hstack((orig_image, dest_image)) save_image(os.path.join(out_dir, "{}_src_{}.jpg".format(name,prefix)), dest_image)
# -*-coding: utf-8 -*- """ @Project: pytorch-learning-tutorials @File : dataset.py @Author : panjq @E-mail : pan_jinquan@163.com @Date : 2019-03-07 18:45:06 """ import torch from torch.autograd import Variable from torchvision import transforms from torch.utils.data import Dataset, DataLoader import numpy as np from utils import image_processing import os class TorchDataset(Dataset): def __init__(self, filename, image_dir, resize_height=256, resize_width=256, repeat=1): ''' :param filename: 數(shù)據(jù)文件TXT:格式:imge_name.jpg label1_id labe2_id :param image_dir: 圖片路徑:image_dir+imge_name.jpg構(gòu)成圖片的完整路徑 :param resize_height 為None時(shí),不進(jìn)行縮放 :param resize_width 為None時(shí),不進(jìn)行縮放, PS:當(dāng)參數(shù)resize_height或resize_width其中一個(gè)為None時(shí),可實(shí)現(xiàn)等比例縮放 :param repeat: 所有樣本數(shù)據(jù)重復(fù)次數(shù),默認(rèn)循環(huán)一次,當(dāng)repeat為None時(shí),表示無(wú)限循環(huán)sys.maxsize ''' self.image_label_list = self.read_file(filename) self.image_dir = image_dir self.len = len(self.image_label_list) self.repeat = repeat self.resize_height = resize_height self.resize_width = resize_width # 相關(guān)預(yù)處理的初始化 '''class torchvision.transforms.ToTensor''' # 把shape=(H,W,C)的像素值范圍為[0, 255]的PIL.Image或者numpy.ndarray數(shù)據(jù) # 轉(zhuǎn)換成shape=(C,H,W)的像素?cái)?shù)據(jù),并且被歸一化到[0.0, 1.0]的torch.FloatTensor類型。 self.toTensor = transforms.ToTensor() '''class torchvision.transforms.Normalize(mean, std) 此轉(zhuǎn)換類作用于torch. * Tensor,給定均值(R, G, B) 和標(biāo)準(zhǔn)差(R, G, B), 用公式channel = (channel - mean) / std進(jìn)行規(guī)范化。 ''' # self.normalize=transforms.Normalize() def __getitem__(self, i): index = i % self.len # print("i={},index={}".format(i, index)) image_name, label = self.image_label_list[index] image_path = os.path.join(self.image_dir, image_name) img = self.load_data(image_path, self.resize_height, self.resize_width, normalization=False) img = self.data_preproccess(img) label=np.array(label) return img, label def __len__(self): if self.repeat == None: data_len = 10000000 else: data_len = len(self.image_label_list) * self.repeat return data_len def read_file(self, filename): image_label_list = [] with open(filename, 'r') as f: lines = f.readlines() for line in lines: # rstrip:用來(lái)去除結(jié)尾字符、空白符(包括\n、\r、\t、' ',即:換行、回車、制表符、空格) content = line.rstrip().split(' ') name = content[0] labels = [] for value in content[1:]: labels.append(int(value)) image_label_list.append((name, labels)) return image_label_list def load_data(self, path, resize_height, resize_width, normalization): ''' 加載數(shù)據(jù) :param path: :param resize_height: :param resize_width: :param normalization: 是否歸一化 :return: ''' image = image_processing.read_image(path, resize_height, resize_width, normalization) return image def data_preproccess(self, data): ''' 數(shù)據(jù)預(yù)處理 :param data: :return: ''' data = self.toTensor(data) return data if __name__=='__main__': train_filename="../dataset/train.txt" # test_filename="../dataset/test.txt" image_dir='../dataset/images' epoch_num=2 #總樣本循環(huán)次數(shù) batch_size=7 #訓(xùn)練時(shí)的一組數(shù)據(jù)的大小 train_data_nums=10 max_iterate=int((train_data_nums+batch_size-1)/batch_size*epoch_num) #總迭代次數(shù) train_data = TorchDataset(filename=train_filename, image_dir=image_dir,repeat=1) # test_data = TorchDataset(filename=test_filename, image_dir=image_dir,repeat=1) train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False) # test_loader = DataLoader(dataset=test_data, batch_size=batch_size,shuffle=False) # [1]使用epoch方法迭代,TorchDataset的參數(shù)repeat=1 for epoch in range(epoch_num): for batch_image, batch_label in train_loader: image=batch_image[0,:] image=image.numpy()#image=np.array(image) image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c] image_processing.cv_show_image("image",image) print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label)) # batch_x, batch_y = Variable(batch_x), Variable(batch_y) ''' 下面兩種方式,TorchDataset設(shè)置repeat=None可以實(shí)現(xiàn)無(wú)限循環(huán),退出循環(huán)由max_iterate設(shè)定 ''' train_data = TorchDataset(filename=train_filename, image_dir=image_dir,repeat=None) train_loader = DataLoader(dataset=train_data, batch_size=batch_size, shuffle=False) # [2]第2種迭代方法 for step, (batch_image, batch_label) in enumerate(train_loader): image=batch_image[0,:] image=image.numpy()#image=np.array(image) image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c] image_processing.cv_show_image("image",image) print("step:{},batch_image.shape:{},batch_label:{}".format(step,batch_image.shape,batch_label)) # batch_x, batch_y = Variable(batch_x), Variable(batch_y) if step>=max_iterate: break # [3]第3種迭代方法 # for step in range(max_iterate): # batch_image, batch_label=train_loader.__iter__().__next__() # image=batch_image[0,:] # image=image.numpy()#image=np.array(image) # image = image.transpose(1, 2, 0) # 通道由[c,h,w]->[h,w,c] # image_processing.cv_show_image("image",image) # print("batch_image.shape:{},batch_label:{}".format(batch_image.shape,batch_label)) # # batch_x, batch_y = Variable(batch_x), Variable(batch_y)
以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教。
標(biāo)簽:隨州 信陽(yáng) 淘寶好評(píng)回訪 阜新 濟(jì)源 興安盟 昭通 合肥
巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《pytorch Dataset,DataLoader產(chǎn)生自定義的訓(xùn)練數(shù)據(jù)案例》,本文關(guān)鍵詞 pytorch,Dataset,DataLoader,產(chǎn)生,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問(wèn)題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無(wú)關(guān)。